
Surface Mount Multilayer Varistors High Voltage (HV) Series

Features:

- Bidirectional and symmetrical V/I characteristics Low Capacitance
- Meet IEC61000-4-2 Standard
- Large withstanding surge current capability 400~500A (@8/20μs)
- Multilayer construction provides higher power dissipation

Shape and Dimensions:

Unit (mm)	Length (L)	Width (W)	Thickness (T)	Termination bandwidth (b)
MLV3220HV240V0500				
MLV3220HV270V0500			1.7±0.30	0.0
MLV3220HV390V0500	8.1±0.30	5.0±0.30		0.8 +0.5/-0.1
MLV3220HV430V0450			2.2±0.30	+0.5/-0.1
MLV3220HV470V0400				

Product Identification:

MLV	3220	HV	270V	0500
<u>Category Code</u> MLV = Multilayer Varistor	Size Code Inch (mm) 3220 (8153)	Application Code HV = High Voltage	Breakdown Voltage Code 390V = 390V 430V = 430V 470V = 470V	Surge Current Code 0400 = 400A 0450 = 450A 0500 = 500A

Electrical Characteristics:

Operating temperature: -55 to +85°C

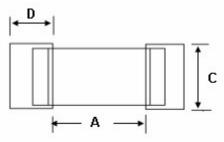
Part Number	Size	Wor Volt	_	Breakdown Voltage ¹	Clamping Voltage ²		Surge Current ³	Energy	Capacitance ⁴
		Vac	Vdc	@1mA (V)	А	v	@8/20μs (A)	(1)	@1kHz (pF)
MLV3220HV240V0500		150	200	240 (±10%)		390	500	> 14.5	380
MLV3220HV270V0500		175	225	270 (±10%)		450	500	> 16.0	340
MLV3220HV390V0500	3220	250	330	390 (±10%)	10	647	500	> 20.0	125
MLV3220HV430V0450		275	369	430 (±10%)		705	450	> 21.0	120
MLV3220HV470V0400		300	385	470 (±10%)		775	400	> 21.6	115

¹ The breakdown voltage was measured at 1 mA current.

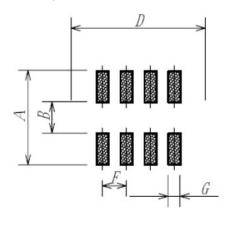
² The clamping voltage was measured at standard current 3220 (10A).

 $^{^3}$ The surge current was tested at 8/20 μ s waveform.

⁴ The capacitance value only for customer reference, it's not formal specification.



Surface Mount Multilayer Varistors


Recommended Land Patterns:

MLV Series

	Solder pad layout				
Size	A C		D		
	(mm)	(mm)	(mm)		
0201	0.25~0.35	0.20~0.30	0.25~0.35		
0402	0.4~0.6	0.5~0.6	0.5~0.7		
0603	0.9~1.2	0.6~1.0	0.8~1.2		
0805	1.0~1.5	1.2~1.5	1.0~1.4		
1206	1.8~2.5	1.2~1.8	1.0~1.4		
1210	1.8~2.5	2.2~3.0	1.0~1.4		
1812	2.5~3.3	2.8~3.6	1.2~1.8		
2220	3.8~4.6	4.8~5.5	1.2~1.8		

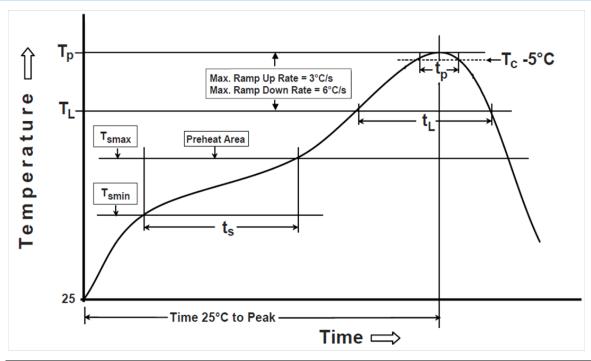
ESD Array Series

Size	A (mm)	B (mm)	D (mm)	F (mm)	G (mm)
0508	2.10	0.40	2.50	0.50	0.35
0612	2.60	0.80	3.60	0.80	0.50

Surface Mount Multilayer Varistors

Environmental Tests:

No.	Test	Requirement	Test condition	Test reference
1	Soldering heat resistance	BDV change ≤ ±10% No mechanical damage	One dip at 260°C for 5 sec.	MIL-STD-202 Method 210 IEC 60068-2-20
2	Solderability	New solder coverage ≥ 80%	One dip at 255°C for 5 sec. Non-active flux	MIL-STD-202 Method 208 IEC 60068-2-20
3	Maximum surge current	BDV change ≤ ±10% No mechanical damage	100 pulses of 8/20 μs with maximum surge current and 30 sec. interval at 25°C and 30 $^{\sim}$ 65% RH	CECC 42000 IEC 1051-1 Test 4.5
4	Maximum surge energy	BDV change $\leq \pm 10\%$ No mechanical damage	100 pulses of 10/1000 μ s with maximum surge current and 90 sec. interval at 25°C and 30 $^{\sim}$ 65% RH	CECC 42000
5	Thermal cycling	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	5 cycles between -40°C and 125°C with 30 min. dwell time at the temperature extremes and 60 min. dwell time at 25°C	CECC 42000
6	Low temperature resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	1000 hr at -50°C	IEC 60068-2-1
7	Low temperature load resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	1000 hr at -50°C with working voltage applied	IEC 60068-2-1
8	High temperature resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	1000 hr at 150°C	MIL-STD-202 Method 108 CECC 42000
9	High temperature load resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 μA	1000 hr at 85°C with working voltage applied	CECC 42000
10	Humidity resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	500 hr at 40°C and 90 ~ 95% RH	MIL-STD-202 Method 103 IEC 60068-2-3 CECC 42000;
11	Humidity load resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	500 hr at 40°C and 90 $^{\sim}$ 95% RH with working voltage applied	MIL-STD-202 Method 103 IEC 60068-2-3 CECC 42000
12	ESD contact test*	Varistor voltage change > 115% working voltage	Contact electrostatic discharge 100 times with 1 second intervals at 8 KV (Level 4) and polarity: +,-	
13	ESD air test*	Varistor voltage change > 115% working voltage	Air contact electrostatic discharge 100 times with 1 second intervals at 15 KV (Level 4) and polarity:+,-	


^{*} For ES series only.

Surface Mount Multilayer Varistors

Soldering Temperature Profile:

Profile Feature	Pb-Free Assembly				
Preheat/Soak					
Temperature Min (T _{smin})	150°C				
Temperature Max (T _{smax})	200°C				
Time (t _s) from (T _{smin} to T _{smax})	60~120 seconds				
Ramp-uprate (T _L to T _p)	3°C/second max.				
Liquidous temperature (T _L)	217°C				
Time (t _L) maintained above T _L	60~150 seconds				
Peak package body temperature (T _p)	260°C				
Time $(t_p)^*$ within 5°C of the specified classification temperature (T_c)	30 seconds *				
Ramp-down rate $(T_p \text{ to } T_L)$	6°C/second max.				
Time 25°C to peak temperature	8 minutes max.				
* Tolerance for peak profile temperature (T_{p}) is defined as a supplier minimum and a user maximum					

Specifications are subject to change without notice. AEM products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive, aerospace, medical, life-saving applications, or any other application which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property) not expressly set forth in applicable AEM product documentation. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Warranties granted by AEM shall be deemed void for products used for any purpose not expressly set forth in applicable AEM product documentation. AEM shall not be liable for any claims or damages arising out of products used in applications not expressly intended by AEM as set forth in applicable AEM product documentation. The sale and use of AEM products is subject to AEM terms and conditions of sale. Please refer to AEM's website for updated catalog and terms and conditions of sale.